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AUTOMATED FAULT DIAGNOSTICS FOR FREQUENCY- 
DEPENDENT CIRCUITS BY CORRELATION AND VARIANCE TECHNIQUES 

By Henry B. Metcalf 
Electronics Research Center 
Cambridge, Massachusetts 

A computer program, NASAP (Network Analysis for Systems 
Applications Program), has been adapted to perform fault diagnosis 
in frequency dependent systems. 

The program simulates a short circuit and an open circuit 
for each network parameter and prints out a modified transfer 
function of the network corresponding to each simulated failure. 
Experimental and simulated data are subjected to correlation and 
variance analysis in order to rank all parameters according to 
probability of failure in the network model. 

The program lists, at present, single failures in order to 
decreasing probability. Possible extensions of the program to 
multiple failures are examined. 

I.- INTRODUCTION 

Review of Work 

The computer program, NASAP, has been adapted to perform 
fault diagnosis in frequency-dependent circuits. The present 
version of NASAP can handle linear circuits, which consist of 
constant-value passive elements, and independent or dependent 
current and voltage sources. The program has been written in 
CDC FORTRAN IV to make it easy for the intended user to under- 
stand the algorithms and to make changes within the program. The 
version of NASAP described within this report has been run on the 
ISM 7 0 9 4 -  

The technique employed in the failure diagnostic method has 
evolved from three sources. The first of these is linear-graph 
theory and flow-graph theory. Each circuit is given a linear 
graph description which is then formulated into flow-graph terms 
by a computer subroutine thus forming the basis of the computer 
algorithms for later output requests. 

The second area is that of correllation and variance ana1ysi.s. 
The correllation coefficient is the statistical index used to 
measure the similarity observed between like sets of data. It 
is used here to provide a standardized measure of the degree of 



deviations observed in the simulated failures. The variance 
measure is employed to provide an index of the percentage devia- 
tion caused by a simulated failure. 

The last source and also the foundation of the technique is 
NASAP. The fault-isolation technique developed in this report 
has been formulated for use with NASAP. 

Strategy for Identification of Faulty Elements 

For a given network, a computer program simulates the failure 
of a component in a multi-element network. This simulation is 
accomplished by modifying NASAP as follows: 

1) Solve for the transfer function of the network of interest, 
designated by F (0). 

2) Compute F(k) for 2N distinct cases; namely, when each 
of the N elements is short-circuited and open-circuited. 
The functions F(k) with k = 1,2, ..., 2N but le # 0 define 
a set of modified transfer functions where F(2J-1) are 
short circuits and F(2J) are open circuits, where 
J = 1,2, ..., N. 

3) Evaluate F(0) and F (k) numerically at specified complex 
frequencies by taking the absolute value of the transfer 
functions and the modified transfer functions; this 
yields 2N sets of data for the modified transfer func- 
tions, F(k), and one set of data for the original trans- 
fer function, F(0). 

4) Solve for the correlation coefficients and the variance 
coefficients between the original transfer function and 
the modified transfer functions. This process yields a 
table of identification coefficients for all possible 
failures. 

5) Measure the correlation and variance coefficients between 
the observed response and the desired response, when a 
variant response is observed in a circuit. These coeffi- 
cients are then compared to the table of identification 
coefficients and the possible failures are printed out 
in their order of most probable occurrence. 

Computational Procedures for Locating Fault Elements 

To pinpoint the failure from a knowledge of: 

F (0) Transfer Function 
F (k) Modified Transfer Functions 



two coefficients are derived, 

a) Correlate F(0) with each of the F(k) modified transfer 
functions to yield the correlation coefficient. 

b) Measure the variance caused by each short circuit or 
open circuit at the specified frequencies and the variance 
coefficient results. 

c) Both coefficients can be calculated for every F(k). 

Experimentally the identification is performed as follows: 

1) Construct the network experimentally and measure the 
transfer function. 

2) Determine how the modified transfer functions deviate 
from the calculated transfer function. 

3) Use criteria (a) or (b) or both to identify the faulty 
element. 

4) List a small number of elements that are expected failures 
in their order of most probable occurrence. 

Application of Results 

The computer program output provides the following: 

1) The transfer function of the network of interest. 

2) The modified transfer functions corresponding to solu- 
tions for each short circuit and open circuit. 

3) The numerical evaluation of each transfer function at 
specified frequencies. 

4) The correlation coefficient between the calculated trans- 
fer function and each modified transfer function. 

5) The variance coefficient computed. for each modified 
transfer function. 

6) The most probable failures in terms of the experimental 
results. 

7) The program is written in CDC FORTRAN IV and is presently 
being run on the IBM 7094. The program is available from 
project COSMIC. 



11.- METHODS 

The Topology Equation 

The basic algorithm employed in the computer program is the 
topology equation which provid-es a method for finding the desired. 
cause-effect relationship between an input and output variable. 
All applications of the topology equation in this report deal with 
closed-signal flowgraphs. 

The closing element P is the performance parameter. Q 
refers to the element where failure is being simulated and the 
topology equation, H = 0, can be expanded as follows: 

It states that P can be expressed in terms of Q, since 
H(P,Q) = 0 is linear in P and Q. Although the topology equation 
applies to all types of linear systems, it can be illustrated by 
a flowgraph (such as the one) in Figure 1. 

In the case of flowgraphs the topology equetion yields: 

H(P1) - loops with the P tag present 
H(P) - loops that are deprived of the P tag 

and similarly for H (Q1 ) and H (Q) . 
The combination of loops in the topology equation of a 

closed network is given by: 

H = c H(m) where 
m 

H(m) = Cn L(m,n) and 

m is the order of the loop and n is the number of loops belonging 
to each order. L(m,n) is the nth loop of order m. A loop is 
defined as a sequence of transmittances such that every node is 
common to two and only two transmittances of the loop, one termina- 
ting at the node and one emanating from the node. In a first- 
order loop every node can be reached from every other node. A 
loop of order m is a set of N disjoint first-order loops. 

For Figure 1 the loops are listed in Table I, The topology 
equation then is: 



H ( P 1 , Q )  = - P K L  

H ( P , Q ' )  = JQR 

H ( P 1 , Q ' )  = J K L  Q P R  

F igure  1.- L o o p  e x a m p l e  

T A B L E  I.- L I S T I N G  O F  L O O P S  FROM F I G U R E  1 

T h e  M o d i f i e d  T r a n s f e r  Func t ion  

Solving H  = Q  f o r  1 /P  g ives  

- - - H ( P '  ) a F ( 0 )  , t h e  t rans fe r  f u n c t i o n  
P 

H  6 )  

H ( P ' )  = H ( P ' , Q )  + Q H ( P ' , Q ' )  

H ( P )  = H ( P , C )  + Q H ( F , Q ' )  

i m p l i e s  



Table I1 defines the variance in impedance short circuit 
and open circuit of parameter Of as derived from the above 
formula for F(0). 

TABLE 11.- MODIFIED TRANSFER FUNCTIONS 

Circuit (SC) 

Circuit (OC) 

Illustrative Example for Numerical Data 

Experimental data of the transfer function F(Ofi) and the 
modified transfer function F(k,i) at specified frequencies w(i) 
are printed out by the computer program. This will be illustrated 
for the circuit in Figure 2. 

Figure 2.- Illustrative circuit 



The  c i r c u i t  w a s  c o n s t r u c t e d  w i t h  c o m p o n e n t s  l i s t e d  i n  
T a b l e  I11 and IR8/VV1 w a s  m e a s u r e d  e x p e r i m e n t a l l y .  

TABLE 111.- COMPONENT VALUES FOR ILLUSTRATIVE NETWORK 

1 . 0 0 0  K ohm 
5 . 4 1 2  MH 
1 . 2 6 2  k ohm 

2 0 0 . 0 0 0  PF 
5 . 6 4 5  MH 
1 , 3 0 7  K ohm 

2 1 2 . 8 0 0  PF  
1 . 2 2 8  K ohm 

2 8 1 . 8 0 0  PF 
1 . 2 5 4  K ohm 

1 1 9 . 0 0 0  ohm 

T a b l e  I V  g ives  t h e  da ta  sets f o r  F ( O ) ,  t h e  o r i g i n a l  t r a n s -  
fer  f u n c t i o n ,  a n d  F  ( 1 )  , F ( 3 )  , F  ( 4 )  , t h r e e  m o d i f i e d  t r a n s f e r  
f u n c t i o n s .  F ( 1 )  c o r r e s p o n d s  t o  t h e  s h o r t  c i r c u i t  of R1,  F ( 2 )  
corresponds t o  t h e  o p e n  c i r c u i t  of R1,  a n d  F ( 3 )  i s  t h e  s h o r t  
c i r c u i t  of ~ 7 .  

S i n c e  F ( 2 , i )  = 0 ,  t h e  d a t a  se t  of R 1  o p e n  c i r c u i t ,  it i s  
n o t  l i s t ed  i n  t h e  t ab le .  

I t  i s  i m p o r t a n t  t o  n o t e  t h a t  i n  many of t h e  f o l l o w i n g  t ab l e s  
t h e  da ta  have been carried t o  f i v e  or  s i x  places.  T h i s  i s  f o r  
i l l u s t r a t i v e  p u r p o s e s  o n l y  s i n c e  t h e  i n p u t  d a t a  i m p l y  o n l y  f o u r -  
f i g u r e  a c c u r a c y  a t  t h e  m o s t .  

TABLE 1V.- DATA SETS 



The Correlation Coefficient 

The correlation coefficient (R) for F (0 ,i) and some set 
F(k,i) is the mean of the paired products of the deviations of 
each score from their respective means when these deviations are 
measured in units of their respective standard deviations, 
D(0,i) and D(k,i). 

where the summation extends over the frequency interval specified 
by M measurements; hence, the means are: 

G(0,i) = C F(O,i)/M, and similarly G(k,i) = C ~(k,i)/~ 

and the standard deviation is: 

Similarly, 

2 
1 F(kIi) - G(k,i) D(k,i) =( 2)r,  for K + o 

Each point evaluated corresponds to a point on a curve and 
each data set describes a curve; hence, a value of R is assigned 
for each short circuit and open circuit. That is, the deviations 
of each modified transfer function, F(k), from the original 
transfer function, F(O), result in a separate value of R as 
shown in Table V. The absolute value of R will ensure that it 
is positive. 



TABLE V.- CORRELATION COEFFICIENTS 

k FAILURE SC OC R 

1 R1 X .952979 
2 R1 X .OOO 
3 L7 X .897051 
4 L7 X .794069 
5 R7 X .940948 
6 R7 X .794069 
7 C7 X ,905976 
8 C7 X .938431 
9 L6 X -889213 
10 L6 X .741361 
11 R6 X .943269 
12 R6 X .741361 
13 C6 X .897955 
14 C6 X .929121 
15 R3 X .961076 
16 R3 X .OOO 
17 C2 X .OOO 
18 C2 X .948035 
19 R5 X .961537 
20 R5 X .OOO 

-- 

Variance Due to the Failure of a Single Component 

The correlation technique is not always sensitive enough 
to detect a failure. The variance coefficient, T, can be an 
alternative or is used in conjunction with the correlation 
coefficient, R. Both methods are measures of the deviation 
observed between the original transfer function and the modified 
transfer functions. When used together they make the fault 
isolation more effective. 

Table VI defines the variance, E, observed in P = l/F(O) 
at the occurrence of a short circuit and open circuit of each 
element; that is, each F(K) . 

The variance defined in Table VI is computed for the example 
in Figure 2. The results for E(P,x)  are listed in Table VII and 
the observed error is plotted in Figure 3 over the frequency 
range. 



TABLE V1.- DEFINITION OF VARIANCE 

- - - - -  
F(k) Zoc Y s c  

From Table  VI: 

where X i s  e i t h e r  Q o r  Q' depending on whether w e  a r e  d e a l i n g  
w i th  a  s h o r t  c i r c u i t  o r  an open c i r c u i t  and k d e s i g n a t e s  a  
p a r t i c u l a r  modif ied  t r a n s f e r  f u n c t i o n .  That  i s ,  i f  K = 1; 





A s  b e f o r e ,  F ( 0 )  i s  t h e  o r i g i n a l  t r a n s f e r  f u n c t i o n ,  F ( 1 )  i s  
R1 s h o r t  c i r c u i t . ,  F ( 2 )  i s  Rl open c i r c u i t ,  F ( 3 )  i s  L7 s h o r t  
c i r c u i t ,  and F ( 4 )  i s  L7 open c i r c u i t .  

E (P,xlkZ2 = 1 ove r  t h e  f requency r a n g e ,  s i n c e  F ( 2 , i )  = 0 
f o r  a l l  i and t h e s e  d a t a  are l e f t  o u t  o f  t h e  t a b l e .  

TABLE VI1.- FRACTIONAL VARIANCE OBSERVED AND 
VARIANCE COEFFICIENT 



Definition of the Variance Coefficient 

The variance coefficient, T, for the deviation between the 
original transfer function, F(O), and the modified transfer 
function F(k) is defined by B. 

Where X is either Q or Q', and k designates the modified 
transfer function being considered, and then: 

where the summation is taken over all M in the frequency range. 

In Table VII for example, 

and similarly for T(3) and T(4). Since: 

E (F,x),=~ = 1, clearly T(2) = 0. 

Table VIII gives a complete listing of all variance coeffi- 
cients, (T) , and correlation coefficients, (R) , for the example 
in Figure 2. 

Fault Isolation Procedure 

In review: 

1) The network was constructed experimentally. 

2) The desired transfer function, F(O), was solved for. 

3) The modified transfer functions, F(k), were established 
for all possible single failures. 

4) The correlation coefficients (R) between each modified 
transfer function and the desired original transfer 
function were formulated. 

5) Similarly, the variance coefficients (T) were established. 



TABLE VII1.- CORRELATION COEFFICIENTS - R 
VARIANCE COEFFICIENTS - T 

Now to move away from the experimental situation, consider 
an actual network and assume that this network has undergone 
a11 the processes in items 1 through 5; that is, it has been 
simulated experimentally. 

Therefore, the desired response is known and any deviations 
from this response can be considered as failures. If a deviation 
is observed, it is desirable to establish the cause of these 
variances or in other words to isolate the failure. 

The isolation procedure is as follows: 

1) F(O), the desired network response, is known. 



F(X) is the observed variant response. 

F (X) is compared to F ( 0 )  and, in the same manner as 
previously defined, a correlation coefficient, R*, and 
a variance coefficient, T*, are evaluated, 

Now consider the variance coefficients, T(k), found 
experimentally from the modified transfer functions 
F(k). There exists a T for all possible single failures. 

Next, all variance coefficients, T(k), which are a 
certain specified percentage less than, and a certain 
specified percentage greater than, T* are designated. 
For example, the set {T (1) , T (2) , T (3) , T (4) , T (5) , 
~ ( 6 )  when 

The set of variance coefficients, {T (1) , T (2) , T (3) , 
T (4) , T (5) , T (6) and also the variance coefficient T* 
have a corresponding correlation coefficient R*. 

Solve for the absolute value of the differences observed 
in the correlation coefficients {R (1) , R (2) , R (3) , R(4) , 
R (5) , R (6) of the modified transfer functions F (k) : 
k = 1,2, ... 6 and the correlation coefficient R* evaluated 
for the variant response F (X) . 

The order of the numbers {zl, Z2, Z3, Zq, Zg, z6} serves 
as the indicator of the likelihood of failure. The 
smallest Z has the highest probability of being the 
failure and so on. 

The entire process described above is applicable to the 
multi-failure situation and the algorithms for multi- 
failures will be considered later in this section. 



Examples of t h e  I s o l a t i o n  Process  

To i l l u s t r a t e  t h e  d e t e c t i o n  techniques  we compile t h e  
expected response from t h e  component d a t a  f o r  t h e  network of 
F igure  2 and examine t h e  c i r c u i t  a f t e r  f a i l u r e  occurs .  Two 
cases  w i l l  be considered (Tables  X and X I ) .  

TABLE 1 X . -  FAILURE CASES 

CASE I :  



TABLE X.- DATA FOR ISOLATION PROCESS - Case I 

TABLE XI.- DATA FOR ISOLATION PROCESS - CASE I1 

T = 17.32274 R = ,948035 

2% Interval Specification for T gives 

LOWER LIMIT = 16.97629 

UPPER LIMIT = 17.66919 



To obtain a set of T scores all experimental variance 
coefficients within 6% (above or below) T* will be taken. It 
should be noted that T* will not always equal some T(k) score 
and R* will not always equal some R(k) score. 

The 6% specification gives a variance coefficient interval 
around T* with a lower limit of 16.06650 and an upper limit of 
19.0665. Now, from the experimental scores in Table VIII, the 
necessary data for fault isolation are illustrated in Table X. 
The following ordered interval around T* is obtained. 

Next, taking R* and Set C, the computation of IR* - R] = Z 
is performed 

The order of parameter failure going from high probability 
to low is: { ~ g  = Zl01 Z6 = z71 Z3, z41 Z1, Z2r z51 Z8r Z121 Z11) 
which corresponds to (~7-oc = R7-OC, L6-OC = R6-OC, L6-SC, L7-SC, 
R7-SC, R6-SC, C2-OC, R1-SC, R3-SC, ~5-SC) = the probability order 
of failure. The 6% interval for T* was used for illustrative 
purposes. Usually a smaller specification would be employed. 



Order of Parameter Failure by Probability 

Simultaneous Failure of Several Elements 

For a single failure, the topology equation was expanded in 
two variables and H(P,Q) was solved for P in terms of element Q. 

For two simultaneous failures the expansion of H(P,Q,R) in 
three variables is employed where Q and R are network elements 
and P is the performance parameter. 

Solving H (P,Q,R) = 0 for 1/P defined to be F (0) yields 

When B parameters can be short-circuited or open-circuited 
simultaneously, 2B distinct modes of failure exist. Each mode 
depends on the combination of short-circuit and open-circuit. 

For B = 2 four formulas are listed. 

Since B = 2 elements, each Q parameter and each R parameter 
can function as either an impedance or as an admittance. 

There will be (22B) combinations to be considered in 
Table XII. In general, the modified transfer functions can now 
be defined as F(k) : k = 1 2 3 ,  2 where N is the number of 
elements that can fail and B is the number that can fail simul- 
taneously. 

The computations of the correlation coefficient and the 
variance coefficient do not change in the multiple failure 
situation. These coefficients are complied and utilized in the 
same manner as the single failure case. 



TABLE X11.- POSSIBLE DOUBLE FAILURE CASES 

SC-Q; SC-R 
SC-Q; OC-R 
OC-Q; SC-R 

111.- FUTURE TASKS 

The technique presented may be extended as follows: 

a) Expand the computer program for multiple failures. 
Three simultaneous failures are a feasible goal. 

b) Test the technique for a wider range of circuits to 
establish its limitations and potential. 

c) Establish whether the coefficients can be utilized more 
effectively, particularly for multiple failures. 

The increasing number of components in microcircuits has 
established the necessity of failure analysis. The results of 
this analysis have provided one method for the isolation of 
failure in the frequency-dependent circuit. 
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